Suche

RWE: Die Zukunft nicht im Blick

RWE steige nach Deutschland jetzt auch international aus der Kernenergie aus, berichtet die Süddeutsche Zeitung. Das finanzielle Risiko beim Bau neuer Kernkraftwerke sei zu hoch. Man wolle sich mehr auf Photovoltaik konzentrieren.

Teure Kernkraftwerke

Klar, die Investitionen in ein neues Kernkraftwerk sind nicht ohne! So ein typischer Leichtwasserreaktor steht immerhin unter dem enormen Überdruck von rund 150 Atmosphären; dafür braucht’s einen Reaktordruckbehälter mit 20 cm dicken Stahlwänden. Der ist daher »etwas« teurer als ein Schnellkochtopf aus dem Kaufhaus. Für den Fall, daß es irgendwo im Primärkreislauf zu einem Riß kommt und sich das Kühlwasser schlagartig in Dampf verwandelt und auf das tausendfache Volumen ausdehnt, steckt das Ganze in einem gewaltigen Containment aus dicken Betonwänden, mitunter sogar aus doppelten Betonwänden wie bei Arevas EPR-Reaktor.

Ach ja, die Kühlsysteme kommen als weitere Kostentreiber hinzu, und die müssen mindestens doppelt und dreifach vorhanden sein. Nicht zu vergessen die Notstromversorgungen, passive Kühlung und ein Core Catcher, im Fall der Fälle den geschmolzenen Kern auffängt und dafür sorgt, daß nichts in die Umwelt gelangt.

Ja, teuer sind sie, diese modernen Kernkraftwerke! Und Sympathien gewinnt man damit auch nicht überall.

Hinterhergehen

Da hat man es als Energieversorger ja doch leichter, wenn man, statt vorwegzugehen, einfach dem gerade aktuellen Trend hinterherläuft und statt auf Kernkraft auf Solarenergie setzt. Natürlich, Photovoltaik hat ihren Platz, aber wer ein bißchen nachrechnet, erkennt schnell, daß sie den Energiebedarf Deutschlands niemals wird decken können.

Was Photovoltaik abwirft – und aufgrund physikalischer Gesetze jemals wird abwerfen können –, reicht für eine Energieversorgung der Zukunft nicht aus. Das gilt erst recht für die Grundlast, denn nachts und bei schlechtem Wetter liegt die Photovoltaikleistung bei Null. Heute sorgen Kohle-, Öl- und Gaskraftwerke für die Grundlast. Die wird man aber kaum als zukunftsweisend betrachten, denn sie beschleunigen den Klimakollaps, verschmutzen die Umwelt und verbrauchen begrenzte Ressourcen. Kohlekraftwerke geben überdies ein Vielfaches der Radioaktivität eines Kernkraftwerks an die Umwelt ab. Nein, RWE, mit fossilen Kraftwerken läßt sich erst recht nicht vorweggehen!

VORWEGGEHEN in Japan – mit dem Thorium-Flüssigsalzreaktor

Auf die Herausforderung, leistungsstarke und grundlastfähige Energiequellen für morgen bereitzustellen, hat als erster Energieversorger kürzlich die japanische Chubu EPCO reagiert und ein Forschungsprogramm für einen Thorium-Flüssigsalzreaktor aufgelegt. Das ist eine völlig andere Art der Kernenergie, die mit den herkömmlichen Leichtwasserreaktoren praktisch nichts mehr gemein hat.

Einige Eigenschaften des Thorium-Flüssigsalzreaktors:

  • Der Betrieb erfolgt bei Normaldruck, daher besteht keine Gefahr von Dampfexplosionen.
  • Aufwendige und teure Sicherheitssysteme sind überflüssig. Bei Problemen geht der Reaktor einfach aus, ohne daß irgendwer irgendwas tun muß.
  • Die Kühlung erfolgt nicht mit Wasser, sondern mit geschmolzenem Salz.
  • Eine Kernschmelze ist nicht möglich, da der Brennstoff ohnehin bereits in flüssiger Form im Salz gelöst vorliegt.
  • Kleine Einheiten »von der Stange« ermöglichen eine dezentrale Energieversorgung.
  • Statt Uran kommt Thorium als Brennstoff zum Einsatz. Thorium kommt drei- bis viermal häufiger als Uran vor.
  • Der Brennstoff wird zu fast 100 Prozent ausgenutzt, nicht bloß zu 0,7 Prozent wie bei traditionellen Reaktoren. Daher braucht man für die gleiche Leistung weniger als ein Hundertstel der Brennstoffmenge.
  • Dem Brennstoff kann man langlebigen Atommüll (Transurane) aus Leichtwasserreaktoren beimischen, den Müll auf diese Weise loswerden und dabei auch noch Energie gewinnen.
  • Brennstoff wird im laufenden Betrieb ständig zugefügt. Stillstand wegen Brennelementwechsels ist überflüssig.
  • Spaltprodukte werden im laufenden Betrieb ständig aus dem Brennstoff entfernt.
  • Für die Spaltprodukte reicht eine Lagerdauer von maximal 300 Jahren aus. Die meisten Spaltprodukte kommen mit einigen Jahrzehnten oder weniger aus. Ein Endlager für Hunderttausende oder Millionen von Jahren ist überflüssig.
  • Spaltprodukte sind nicht einfach Abfall, sondern teilweise wertvolle Stoffe wie zum Beispiel stabiles Neodym für starke Magnete in Kopfhörern und Windkraftanlagen oder radioaktives Molydän-99 für die medizinische Diagnostik.

Am Thorium-Flüssigsalzreaktor (Liquid Fluoride Thorium Reactor, LFTR) arbeiten außer in Japan Teams in China, Tschechien, Australien und den USA. Grundlage ist das Molten-Salt Reactor Experiment (MSRE), das von 1965 bis 1969 in den USA erfolgreich lief. In den 1970er Jahren geriet es aber in Vergessenheit und gelangte erst 2006 wieder in den Fokus. Experten rechnen mit Kosten, die noch unterhalb von Kohle liegen. Das wird die Flüssigsalztechnik auch für Entwicklungs- und Schwellenländer interessant machen, die heute massiv Kohlekraft ausbauen.

Konkrete Ergebnisse der Forscherteams sind bereits in den nächsten Jahren zu erwarten. Deutschland hat sich in diesem Bereich leider aus Forschung und Entwicklung ausgeklinkt. Vorweggehen sieht anders aus. Schade!

Newsletter

Ja, ich will … Infos über Aktionen und Neues rund um die beste Energiequelle direkt in mein Postfach.